Benthocyanins B and C. New Free Radical Scavengers from Streptomyces prunicolor

Kazuo Shin-ya, Kazuo Furihata,[†] Yoshihiro Teshima, Yoichi Hayakawa, and Haruo Seto*

Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan, and Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Received March 10, 1993

Recently, a variety of diseases such as atherosclerosis, inflammation, Parkinson's disease, and ischemia-reperfusion injury including cerebral trauma and stroke have been proven to be caused by oxygen-derived free radicals.1-3 These diseases were reported to be ameliorated or overcome by substances which exhibited free radical scavenging activities.4

In the course of our screening for free radical scavengers of microbial origin,⁵⁻⁷ we isolated benthocyanin A (3)⁸ from the mycelium of Streptomyces prunicolor and determined its structure by NMR and X-ray crystallographic experiments. As shown in Figure 1, 3 is a unique phenazine carboxylic acid fused with a phenyl-substituted γ -lactone and a geranyl substituent at a nitrogen. Further investigation has resulted in the isolation of minor congeners of 3, designated benthocyanins B (1) and C (2) (Figure 1). We report herein on structural studies of these metabolites.

Isolation of 1-3 from the mycelium of Streptomyces prunicolor was carried out by combined column chromatography (see Experimental Section). Benthocyanin B (1) and benthocyanin C (2) were obtained as dark blue plates and violet powder, respectively. The physicochemical properties and ¹H and ¹³C NMR chemical shifts of 1-3 are compared in Tables I and II.

The UV and visible spectra of 1 were very similar to those of 3 suggesting the presence of the same chromophore in these two compounds. The IR absorption of 1 at 1740 and 1710 cm⁻¹ revealed the presence of ester and carboxylic acid functions as seen in 3. The molecular formula of 1, $C_{31}H_{28}N_2O_4$, was determined to be identical with that of 3 by HRFAB-MS (m/z found 493.2106 [M + H]⁺, calcd for $C_{31}H_{29}N_2O_4$ 493.2127). In common to 3, there were observed ¹H and ¹³C NMR signals assignable to a geranyl side chain and a phenyl residue together with an aromatic proton (4-H) in 1 (see Table II). However, there existed clear differences between them; 1-H in 3 was absent in 1 and the three consecutive aromatic proton system in 3 was replaced by a four-proton system consisting of 6-H to 9-H in 1.

[†] Department of Agricultural Chemistry.

- (2) Kantos, H. A. Chem. Biol. Interact. 1989, 72, 229.
- (3) Bolli, R.; Jeroudi, M. O.; Patel, B. S.; DuBose, C. M.; Lai, E. K.; Roberts, R.; McCay, P. B. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 4695.
- (4) Inoue, M.; Watanabe, N.; Morino, Y.; Tanaka, Y.; Amachi, T.; Sasaki, J. FEBS Lett. 1990, 269, 89.

- J. FEBS Lett. 1990, 259, 89.
 (5) Shin-ya, K.; Imai, S.; Furihata, K.; Hayakawa, Y.; Kato, Y.;
 VanDuyne, G. D.; Clardy, J.; Seto, H. J. Antibiot. 1990, 43, 444.
 (6) Mo, C.-J.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. J.
 Antibiot. 1990, 43, 1337.
 (7) Teshima, Y.; Shin-ya, K.; Shimazu, A.; Furihata, K.; Ha, S. C.;
 Furihata, K.; Hayakawa, Y.; Nagai, K.; Seto, H. J. Antiobiot. 1991, 44, 44. 685.

(8) Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Kato, Y.; Clardy, J.; Seto, H. Tetrahedron Lett. 1991, 32, 943.

Figure 1. Structure of benthocyanins.

The sequence from 6-H to 9-H was established by ¹H NMR spectral analysis and ascribed to an ortho-disubstituted benzene ring (Figure 2). The terminal methylene protons (19-H) of the geranyl side chain were coupled to the carbon (C-5a), which in turn was long range coupled to 7-H. Based on its ¹³C chemical shift (46.8 ppm), C-19 was linked to a nitrogen atom. Thus, the geranyl side chain was connected to the ortho-disubstituted benzene ring through a nitrogen atom.

The isolated aromatic proton (4-H) was coupled to C-2, C-4a, C-10a, and C-11. In addition, C-11 was coupled to aromatic protons on the phenyl ring (14-H and 18-H) (Figure 2). Additionally, C-4a was coupled to 19-H. The ¹³C NMR spectrum of 1 also showed that the methine carbon C-1 (102.9 ppm) in 3 was replaced by a guaternary carbon in 1 (101.4 ppm). The very similar ¹³C chemical shift values of these two carbons in 1 and 3 suggested that C-1 was substituted by an electron-withdrawing substituent, *i.e.*, a carboxylic acid, the presence of which was confirmed by preparation of a monomethyl ester of 1 with diazomethane $[C_{32}H_{30}N_2O_4;$ HRFAB-MS (m/z found, $507.2290 [M + H]^+; calcd for C_{32}H_{31}N_2O_4, 507.2284; OCH_3,$ 4.06 ppm)]. The relationships between 4-H, 6-H, 14/18-H, and 19-H were established by NOE experiments as shown in Figure 2.

These data showed that 1 is a regioisomer of 3 with the carboxylic acid at C-1 in place of C-9 in 3. The other remaining carbons were reasonably assigned as shown in Table II. Further analyses of the HMBC and NOE spectra and ¹³C chemical shifts (see Table II and Figure 2) supported the structure of 1.

The violet color of 2 different from 1 and 3 indicated that 2 contained a different chromophore. The IR absorption at 2180 and 1667 cm⁻¹ revealed the presence of a nitrile and a carboxylic acid residue, respectively. Its molecular formula established as C₃₁H₂₉N₃O₃ from HR-FAB-MS (m/z found 492.2279 [M + H]⁺, calcd 492.2287) showed that one oxygen atom in 3 was replaced by NH in 2.

In the ¹H and ¹³C NMR spectra of 2, a geranyl side chain, a phenyl ring, an ortho-disubstituted benzene group, and an isolated singlet proton (4-H) were observed as in 1. In addition, two hydrogen-bonded exchangeable protons were observed at an extremely low field (14.54 and 15.70 ppm). An NOE experiment irradiating at 9-H enabled us to assign one of the exchangeable protons to an amine proton 10-H (14.54 ppm). In the HMBC

⁽¹⁾ Hammond, B.; Kontos, H. A.; Hess, M. L. Can. J. Physiol. Pharmacol. 1985, 63, 173.

Table I.	Physi	lcochemic	al Properties	of Benthocyan	ins B, C	, and A
----------	-------	-----------	---------------	---------------	----------	---------

	benthocyanin B (1)	benthocyanin C (2)	benthocyanin A (3)
appearance	dark blue plate	violet powder	dark blue plate
mp	235–236 °Č	157-158 °C	196–197 °Č
molecular formula	$C_{31}H_{28}N_2O_4$	$C_{31}H_{29}N_3O_3$	$C_{31}H_{23}N_2O_4$
HRFAB-MS (m/z) $(M + H)^+$			
found	493.2106	492.2279	493.2071
calcd	493.2127	492.2287	493.2127
UV λ_{max}^{MeOH} nm (ϵ)	249 (24400)	246 (18100)	247 (29000)
	344 (15900)	283 (11300)	342 (18600)
	415 (6100)	445 (5700)	424 (7400)
	430 (6100)	470 (5300)	622 (17200)
	615 (15700)	570 (11700)	
$\lambda^{\text{MeOH} + \text{HCl}}_{\text{max}} \text{nm} (\epsilon)$	245 (26300)	247 (21100)	247 (30600)
max	335 (15200)	280 (7800)	344 (18800)
	632 (16400)	325 (12100)	638 (16200)
		410 (5300)	,
		430 (6400)	
		665 (13100)	
$\lambda_{mod}^{MoOH + NaOH} nm(\epsilon)$	250 (26400)	251 (16300)	247 (31400)
max	343 (17400)	335 (8000)	340 (17400)
	415 (6500)	410 (3600)	407 (8000)
	430 (6500)	440 (4400)	428 (8000)
	615 (17300)	535 (11600)	616 (18400)
IR $\nu_{\rm max}$ (KBr) cm ⁻¹	3430, 1760, 1745	3430, 2180, 1735, 1670	3450, 1740, 1720

Table II. The ¹³C and ¹H NMR Chemical Shifts of Benthocyanins B, C, and A Taken in CDCl₃

	benthocyanin B (1)		benthocynin C (2)		benthocynin A (3)	
no.	δc	δ _H	δ _C	δ _H	δc	δ _H
1	101.4		95.2		102.9	6.96
2	161.1		180.3		158.6	
3	140.2		139.7		140.2	
4	92.4	6.71	101.3	6.25	92.5	6.76
4a	132.4		130.3		133.3	
5 a	131.7		130.4		132.2	
6	113.7	7.43	113.5	7.04	117.8	7.53
7	132.7	7.67	128.4	7.31	131.0	7.66
8	125.1	7.42	123.6	7.15	128.4	8.30
9	127.9	7.80	119.1	7.30	125.3	
9a	128.0		123.9		134.6	
10 a	148.3		148.8		150.2	
11	110.9		110.8		112.0	
12	167.4		120.9		168.3	
13	130.8		135.4		131.4	
14,18	128.7	7.77	129.7	7.50	128.1	7.81
15,17	128.9	7.46	129.5	7.44	129.1	7.48
16	127.9	7.37	129.1	7.43	128.9	7.38
19	46.8	4.92	45.9	4.39	47.1	4.87
20	115.7	5.15	116.1	4.95	115.9	5.16
21	143.2		142.4		143.6	
22	39.4	2.12	39.2	1.97	39.7	2.13
23	26.1	2.12	26.2	1.97	26.5	2.13
24	122.9	4.98	123.1	4.97	123.1	5.00
25	132.7		132.2		132.8	
26	17.1	1.94	16.6	1.39	17.4	1.94
27	25.6	1.55	25.7	1.64	25.8	1.57
28	17.7	1.51	17.7	1.56	17.9	1.52
2 9	162.1		172.1		166.3	
10-NH				14.54		
29-OH				15.70		

spectrum of 2, both the terminal methylene protons of the geranyl side chain (19-H) and amine protons (10-H) were coupled to the same carbons C-4a and C-5a (Figure 3). In addition, C-4a displayed a long-range coupling to the isolated proton 4-H. Additional important long-range correlations were observed from 4-H to C-2, C-10a, and C-11. The other hydrogen-bonded exchangeable proton was ascribed to the hydroxy proton of a carboxylic acid residue due to the coupling to the carboxylic acid carbon C-29 and its adjacent carbon C-1. In addition to this correlation, the HMBC spectral analyses with the orthodisubstituted benzene unit and the phenyl ring revealed

Figure 2. NMR analyses of benthocyanin B (1).

Figure 3. NMR analysis of benthocyanin C (2).

the phenazine skeleton in 2 (Figure 3). The remaining isolated unit was shown to be a nitrile residue at C-11 by the IR absorption (2180 cm⁻¹) and its ¹³C chemical shift (120.9 ppm). Thus, the structure of 2 was determined as shown in Figure 1.

Both 1 and 2 inhibited lipid peroxidation in rat microsomes⁹ at low concentrations. IC₅₀ values of 1 and 2 were 0.16 and 0.29 μ g/mL, respectively, which were 30–70 times as strong as that of vitamin E. They also showed

⁽⁹⁾ Onkawa, H.; Ohishi, N.; Yagi, K. Anal. Biochem. 1979, 95, 351.

inhibitory effects on rat erythrocyte hemolysis¹⁰ with IC₅₀ values, 0.56 and 1.30 μ g/mL, respectively. Further studies on other biological activities are now under way.

Experimental Section

General Experimental Procedure. Spectral data were collected on the following instruments: IR, JASCO A-102; UV/ visible, Shimazu UV-300; FAB-MS, JEOL HX-110, *m*-nitrobenzyl alcohol matrix; NMR, JEOL JNM GSX-500. ¹H NMR chemical shifts are reported in ppm relative to TMS and ¹³C NMR chemical shifts are reported in ppm relative to CDCl₃ (77.0 ppm). One bond ¹H-¹³C connectivities were determined via ¹³C-¹H COSY experiments, and multiple-bond ¹H-¹³C connectivities were revealed through an HMBC experiment. Silica gel 60 F₂₅₄ plates (Merck) were used for analytical and preparative TLC.

Purification of 1 and 2. The producing microorganism of benthocyanins, *Streptomyces prunicolor* 1884-SVT2, was cultivated in a producing medium (starch 2.5%, soybean meal 1.5%, dry yeast 0.2%, CaCO₃ 0.4%, pH 7.2). Cultures were incubated in jar fermenters at 27 °C for 2 days. The mycelial cake collected by centrifugation from the whole fermentation broth (1600 L) was stirred in acetone. The solvent extract was concentrated *in* vacuo and the aqueous residue was extracted with EtOAc, dried over Na₂SO₄, and concentrated *in* vacuo. After removal of the solvent, the residue was applied to a silica gel column packed with CHCl₃. Following the elution of 3, a mixture of 1 and 2 was eluted with CHCl₃/MeOH (10:1). After removal of the organic solvent, the residue was rechromatographed on a silica gel column with CHCl₃/MeOH (20:1) to give crude 1 and 2. Gel filtration

(10) Bunyan, J.; Green, J.; Edwin, E. E.; Diplock, T. Biochem. J. 1960, 77, 47.

on Toyopearl HW-40F (MeOH) and Sephadex LH-20 (CHCl₃/ MeOH, 1:1) gave pure 1 as dark blue plates. Crude powder of 2, which was obtained by silica gel column chromatography, was further purified by preparative TLC (CHCl₃/MeOH, 20:1). Finally, gel filtration on Sephadex LH-20 (CHCl₃/MeOH, 1:1) gave pure 2 as a violet powder.

Preparation of the Methyl Ester of 1. To a CHCl₃ solution (5 mL) of 1 (10 mg) was added an aliquot of diazomethane, and the mixture was stirred for 1 h at room temperature with monitoring by silica gel TLC (CHCl₃/MeOH 10:1). After evaporation of the solvent, the residue was passed through a silica gel column $(4.5 \times 25 \text{ cm})$ with CHCl₃ to afford a monomethyl ester of 1 (8 mg) as dark blue plates: HRFAB-MS m/z 507.2290 $(M + H)^+$ (calcd for C₃₂H₃₁N₂O₄ 507.2284); IR ν_{max} (KBr) cm⁻¹ 3440, 1730, 1720 (sh), 1235; UV λ_{max} (ϵ) in MeOH 244 (22300). 345 (11200), 365 (sh, 9600), 420 (4000), 620 (10500); ¹H NMR (CDCl₃) § 7.93 (1H, dd, 8.0, 1.5 Hz, 9-H), 7.80 (2H, dd, 8.0, 1.0 Hz, 14,18-H), 7.58 (1H, dd, 8.0, 1.5 Hz, 7-H), 7.45 (2H, dt, 8.0, 1.0 Hz, 15,17-H), 7.38 (2H, m, 6,8-H), 7.33 (1H, dt, 8.0, 1.0 Hz, 16-H), 6.63 (1H, s, 4-H), 5.13 (1H, m, 24-H), 4.98 (1H, m 20-H), 4.89 (2H, bd, 5.0 Hz,, 19-H), 4.06 (3H, s, OCH₃), 2.11 (4H, m 22,23-H), 1.93 (3H, s, 26-H), 1.56 (3H, s, 27-H), 1.51 (3H, s, 28-H).

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research, The Ministry Education, Science and Culture, Japan, to Y.H. and by a Grant-In-Aid for JSPS fellows to K.S.

Supplementary Material Available: Copies of spectra of benthocyanins B and C (5 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.